博客
关于我
HDU 1241 Oil Deposits
阅读量:787 次
发布时间:2019-03-23

本文共 5108 字,大约阅读时间需要 17 分钟。

    

Oil Deposits

The GeoSurvComp geologic survey company is responsible for detecting underground oil deposits. GeoSurvComp works with one large rectangular region of land at a time, and creates a grid that divides the land into numerous square plots. It then analyzes each plot separately, using sensing equipment to determine whether or not the plot contains oil. A plot containing oil is called a pocket. If two pockets are adjacent, then they are part of the same oil deposit. Oil deposits can be quite large and may contain numerous pockets. Your job is to determine how many different oil deposits are contained in a grid.

Input

The input file contains one or more grids. Each grid begins with a line containing m and n, the number of rows and columns in the grid, separated by a single space. If m = 0 it signals the end of the input; otherwise 1 ≤ m ≤ 100 and 1 ≤ n ≤ 100. Following this are m lines of n characters each (not counting the end-of-line characters). Each character corresponds to one plot, and is either '*' representing the absence of oil, or '@' representing an oil pocket.

Output

For each grid, output the number of distinct oil deposits. Two different pockets are part of the same oil deposit if they are adjacent horizontally, vertically, or diagonally. An oil deposit will not contain more than 100 pockets.

Sample Input

        1 1*3 5*@*@***@***@*@*1 8@@****@*5 5 ****@*@@*@*@**@@@@*@@@**@0 0    

Sample Output

        0        1        2        2    

C++ Implementation

        #include 
#include
#include
#include
using namespace std; const int MAXN = 105; char maze[MAXN][MAXN]; bool vis[MAXN][MAXN]; int n, m; bool judge(int x, int y) { return x >= 0 && x < n && y >= 0 && y < m; } void dfs(int x, int y) { vis[x][y] = true; for (int i = -1; i <= 1; ++i) { for (int j = -1; j <= 1; ++j) { int tx = x + i; int ty = y + j; if (judge(tx, ty) && !vis[tx][ty] && maze[tx][ty] == '@') { dfs(tx, ty); } } } } int main() { while (scanf("%d%d", &n, &m) != EOF) { if (n == 0 && m == 0) break; for (int i = 0; i < n; ++i) { scanf("%s", maze[i]); } memset(vis, false, sizeof(vis)); int ans = 0; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { if (maze[i][j] == '@' && !vis[i][j]) { ans++; dfs(i, j); } } } cout << ans << endl; } return 0; }

Java Implementation

        import java.util.Scanner;        public class Main {            static int MAXN = 105;            static boolean vis[][] = new boolean[MAXN][MAXN];            static char maze[][] = new char[MAXN][MAXN];            static int n, m;            static boolean judge(int x, int y) {                if (x < 0 || x >= n || y < 0 || y >= m) return false;                return true;            }            public static void main(String args[]) {                Scanner cin = new Scanner(System.in);                while (cin.hasNext()) {                    n = cin.nextInt();                    m = cin.nextInt();                    cin.nextLine();                    if (n == 0 && m == 0) break;                    for (int i = 0; i < n; ++i) {                        for (int j = 0; j < m; ++j) {                            vis[i][j] = false;                        }                    }                    for (int i = 0; i < n; ++i) {                        String s = cin.nextLine();                        maze[i] = s.toCharArray();                    }                    int ans = 0;                    for (int i = 0; i < n; ++i) {                        for (int j = 0; j < m; ++j) {                            if (maze[i][j] == '@' && !vis[i][j]) {                                ans++;                                dfs(i, j);                            }                        }                    }                    System.out.println(ans);                }                cin.close();            }            static void dfs(int x, int y) {                vis[x][y] = true;                for (int i = -1; i <= 1; ++i) {                    for (int j = -1; j <= 1; ++j) {                        int tx = x + i;                        int ty = y + j;                        if (judge(tx, ty) && !vis[tx][ty] && maze[tx][ty] == '@') {                            dfs(tx, ty);                        }                    }                }            }        }    

转载地址:http://olhzk.baihongyu.com/

你可能感兴趣的文章
Objective-C实现binary search二分查找算法(附完整源码)
查看>>
Objective-C实现binary tree mirror二叉树镜像算法(附完整源码)
查看>>
Objective-C实现binary tree traversal二叉树遍历算法(附完整源码)
查看>>
Objective-C实现BinarySearchTreeNode树算法(附完整源码)
查看>>
Objective-C实现binomial coefficient二项式系数算法(附完整源码)
查看>>
Objective-C实现bisection二分法算法(附完整源码)
查看>>
Objective-C实现bisection二等分算法(附完整源码)
查看>>
Objective-C实现BitMap算法(附完整源码)
查看>>
Objective-C实现bitonic sort双调排序算法(附完整源码)
查看>>
Objective-C实现BloomFilter布隆过滤器的算法(附完整源码)
查看>>
Objective-C实现BMP图像旋转180度(附完整源码)
查看>>
Objective-C实现bogo sort排序算法(附完整源码)
查看>>
Objective-C实现boruvka博鲁夫卡算法(附完整源码)
查看>>
Objective-C实现Boyer-Moore字符串搜索算法(附完整源码)
查看>>
Objective-C实现BP误差逆传播算法(附完整源码)
查看>>
Objective-C实现breadth First Search广度优先搜索算法(附完整源码))
查看>>
Objective-C实现BreadthFirstSearch广度优先搜索算法(附完整源码)
查看>>
Objective-C实现BreadthFirstShortestPath广度优先最短路径算法(附完整源码)
查看>>
Objective-C实现bubble sort冒泡排序算法(附完整源码)
查看>>
Objective-C实现Burke 抖动算法(附完整源码)
查看>>