博客
关于我
HDU 1241 Oil Deposits
阅读量:787 次
发布时间:2019-03-23

本文共 5108 字,大约阅读时间需要 17 分钟。

    

Oil Deposits

The GeoSurvComp geologic survey company is responsible for detecting underground oil deposits. GeoSurvComp works with one large rectangular region of land at a time, and creates a grid that divides the land into numerous square plots. It then analyzes each plot separately, using sensing equipment to determine whether or not the plot contains oil. A plot containing oil is called a pocket. If two pockets are adjacent, then they are part of the same oil deposit. Oil deposits can be quite large and may contain numerous pockets. Your job is to determine how many different oil deposits are contained in a grid.

Input

The input file contains one or more grids. Each grid begins with a line containing m and n, the number of rows and columns in the grid, separated by a single space. If m = 0 it signals the end of the input; otherwise 1 ≤ m ≤ 100 and 1 ≤ n ≤ 100. Following this are m lines of n characters each (not counting the end-of-line characters). Each character corresponds to one plot, and is either '*' representing the absence of oil, or '@' representing an oil pocket.

Output

For each grid, output the number of distinct oil deposits. Two different pockets are part of the same oil deposit if they are adjacent horizontally, vertically, or diagonally. An oil deposit will not contain more than 100 pockets.

Sample Input

        1 1*3 5*@*@***@***@*@*1 8@@****@*5 5 ****@*@@*@*@**@@@@*@@@**@0 0    

Sample Output

        0        1        2        2    

C++ Implementation

        #include 
#include
#include
#include
using namespace std; const int MAXN = 105; char maze[MAXN][MAXN]; bool vis[MAXN][MAXN]; int n, m; bool judge(int x, int y) { return x >= 0 && x < n && y >= 0 && y < m; } void dfs(int x, int y) { vis[x][y] = true; for (int i = -1; i <= 1; ++i) { for (int j = -1; j <= 1; ++j) { int tx = x + i; int ty = y + j; if (judge(tx, ty) && !vis[tx][ty] && maze[tx][ty] == '@') { dfs(tx, ty); } } } } int main() { while (scanf("%d%d", &n, &m) != EOF) { if (n == 0 && m == 0) break; for (int i = 0; i < n; ++i) { scanf("%s", maze[i]); } memset(vis, false, sizeof(vis)); int ans = 0; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { if (maze[i][j] == '@' && !vis[i][j]) { ans++; dfs(i, j); } } } cout << ans << endl; } return 0; }

Java Implementation

        import java.util.Scanner;        public class Main {            static int MAXN = 105;            static boolean vis[][] = new boolean[MAXN][MAXN];            static char maze[][] = new char[MAXN][MAXN];            static int n, m;            static boolean judge(int x, int y) {                if (x < 0 || x >= n || y < 0 || y >= m) return false;                return true;            }            public static void main(String args[]) {                Scanner cin = new Scanner(System.in);                while (cin.hasNext()) {                    n = cin.nextInt();                    m = cin.nextInt();                    cin.nextLine();                    if (n == 0 && m == 0) break;                    for (int i = 0; i < n; ++i) {                        for (int j = 0; j < m; ++j) {                            vis[i][j] = false;                        }                    }                    for (int i = 0; i < n; ++i) {                        String s = cin.nextLine();                        maze[i] = s.toCharArray();                    }                    int ans = 0;                    for (int i = 0; i < n; ++i) {                        for (int j = 0; j < m; ++j) {                            if (maze[i][j] == '@' && !vis[i][j]) {                                ans++;                                dfs(i, j);                            }                        }                    }                    System.out.println(ans);                }                cin.close();            }            static void dfs(int x, int y) {                vis[x][y] = true;                for (int i = -1; i <= 1; ++i) {                    for (int j = -1; j <= 1; ++j) {                        int tx = x + i;                        int ty = y + j;                        if (judge(tx, ty) && !vis[tx][ty] && maze[tx][ty] == '@') {                            dfs(tx, ty);                        }                    }                }            }        }    

转载地址:http://olhzk.baihongyu.com/

你可能感兴趣的文章
Objective-C实现external sort外排序算法(附完整源码)
查看>>
Objective-C实现Factorial digit sum阶乘数字和算法(附完整源码)
查看>>
Objective-C实现factorial iterative阶乘迭代算法(附完整源码)
查看>>
Objective-C实现factorial recursive阶乘递归算法(附完整源码)
查看>>
Objective-C实现factorial阶乘算法(附完整源码)
查看>>
Objective-C实现factorial阶乘算法(附完整源码)
查看>>
Objective-C实现Factors因数算法(附完整源码)
查看>>
Objective-C实现Farey Approximation近似算法(附完整源码)
查看>>
Objective-C实现Fast Powering算法(附完整源码)
查看>>
Objective-C实现Fedwick树算法(附完整源码)
查看>>
Objective-C实现fenwick tree芬威克树算法(附完整源码)
查看>>
Objective-C实现FenwickTree芬威克树算法(附完整源码)
查看>>
Objective-C实现fermat little theorem费马小定理算法(附完整源码)
查看>>
Objective-C实现FermatPrimalityTest费马素数测试算法(附完整源码)
查看>>
Objective-C实现fft2函数功能(附完整源码)
查看>>
Objective-C实现FFT快速傅立叶变换算法(附完整源码)
查看>>
Objective-C实现FFT算法(附完整源码)
查看>>
Objective-C实现fibonacci search斐波那契查找算法(附完整源码)
查看>>
Objective-C实现fibonacci斐波那契算法(附完整源码)
查看>>
Objective-C实现fibonacci斐波那契算法(附完整源码)
查看>>